モンティ・ホール問題単語

39件
モンティホールモンダイ
5.5千文字の記事
  • 33
  • 0pt
掲示板へ

モンティ・ホール問題とは、確率論の有名な問題の一つ。
問題の内容自体は単純明快であるものの、「直感的な答えと、きちんと確率論に則って導き出された答えが異なる」という人が後を絶たない。
発表された当時、多くの数学者黒歴史を産み出した。

問題

元ネタアメリカ長寿番組『Let's Make a Deal』中に登場したゲームで、それを元にスティーブセルビンがルールを明確に定めた確率の問題を作成した。
(元ネタになった実際の番組で司会者の行動は、セルビンの問題の厳密なルールとは異なった)→Wikipediaexit

その番組会はモンティホール。問題の名称は彼に由来する。

確率問題としてのルールは以下の通り。

  1. プレイヤーの前にはA,B,Cの3つのドアがあり、そのには当たり(品の)が1つ、ハズレ(ヤギ)が2つ用意されている。
  2. プレイヤードアを1つ選択する(この時点では開かない)。
  3. モンティ正解ドア把握しており、残された2つのうちから必ずハズレの方のドアを開ける(残された2つが両方ともハズレの場合はどちらかをランダムに開ける)。
    これはプレイヤーの回答に関わらず必ず行われ、これらのルールプレイヤーも認識している。
  4. モンティは「今なら選択を変更して構いませんよ?」とプレイヤーに問いかける。

さて、このときプレイヤー最初の選択を変更するべきか、否か?

よくある間違い

これらは間違いである。
ゲームルールが異なっていたり、ゲームの一場面を抜き出して解釈した場合、間違いではなかったりする。

解答

最初にプレイヤードアを選択した時点では、

選んだ1枚のドアが当たりである確率 …… 1/3(33%
選ばなかった2枚のドアのうちどちらかが当たりである確率 …… 2/3(66%

  • もし選んだ1枚が当たりなら
    残された2つのドアはどちらもハズレのため、会者がどちらを開けようとも選択を変えないのが正解
  • もし選ばなかった2枚のどちらかが当たりなら
    残された2つのドアのうち片方はハズレであり、会者は必ずこのハズレドアを開ける。
    となれば最終的に残ったドアは必ず当たりであるから選択を変えるのが正解

さて先ほど述べたように、最初に当たりを引く確率は1/3、ハズレ確率は2/3である。
これはつまり、最初の選択のままで当たる確率が1/3、選択を変えると当たる確率が2/3であると言い換えることができる。
33%で当たる方(66%でハズレ)を選ぶのか、66%で当たる方(33%ハズレ)を選ぶのか。したがって、変更した方が2倍の確率で当たるので変更すべきである。

バリエーション

初めから正解の位置が決まっている(選択前後にヤギが移動しない)」「モンティ外れのドアを開けるという行動を必ず行う」ということをプレイヤーが知っている」問題文となっているが、それぞれを変えることで期待値の計算も変わる。

プレイヤーが選択→モンティヤギを開く、の間にのみが動く場合は期待値は変わらないが、モンティヤギを開いたあとが残ったランダムに移動すれば「選択肢を変更することでを選ぶ確率」は1/2に、「最終的にを得る確率」は1/2となる。移動するか否かをランダムではなくプレイヤーの選択に合わせて変える場合も確率が変わる。プレイヤーが選択したが移動してからモンティヤギを開く条件ならば当然選択肢を変えない方がよい。そのように移動することをプレイヤー事前に知らなければ計算と結果が合わずイカサマ番組と批判されることとなる。

モンティを開くルールを「残ったからランダムに開き、なら終了、ヤギならプレイヤー選択肢を変える権利を与える」という条件に変更すれば「選択肢を変更することでを選ぶ確率」は1/2になり、「最終的にを得る確率」は1/3となる。

プレイヤーが「モンティを開くルールを認識しているか否か」に関係なく、モンティをどのようなルール(余ったのうち必ずヤギを開く、といったルール)に基づいて開くかで実際の確率が決まってくるが、を開くルールを知らなければプレイヤーモンティ行動確率として計算に盛り込むことができない。

プレイヤーが要件を正確に把握していない場合、プレイヤーの知り得る情報から得た期待値とモンティ側が設定した期待値が異なり得るため、正確に計算をすることが出来ない。モンティヤギ部屋から移動させないのにプレイヤーが勝手に移動し得る前提で計算しては推定と実際の統計に齬が出るだろう。

認識のずれであったり「常識的に考えてこうなる」の常識のずれであったりして問題文に盛り込み忘れることもあるので事前にすり合わせが必要になることもある。

得られた確率も、「選択肢を変更した後にを選ぶ条件付き確率」なのか「プレイヤーが最終的にを得られる確率」なのかを明示しないといけない。

感覚的に納得できないのは、このあたりも要因もあるものと思われる。

まだ納得できないなら

話の流れを別の言葉に置き換える

ゲームの流れとしては2で「ドアを一つ選択する」、4で「選択を変える」と言う表現がされている。
しかし、よくよく考えてみると最終決定がされるのは4の時点なのであるから、プレイヤーが本当に「当たりのドアを選択する」必要があるのは4の時点であり、2の時点で当たりのドアを選ぶ必要は一切ない
言い換えれば、2の時点でのプレイヤーは「ドアを『選んだ1つ』と『選ばれなかった2つ』」に組みわけしているだけである。
だとすれば、ゲームの流れは以下のように表記される。

  1. プレイヤーの前に3ドアがあり、当たりが1枚、ハズレが2枚ある。
  2. プレイヤードアを1枚選択し、ドアを1と2の2組に分ける。
  3. プレイヤーは以下のA/Bの行動からどちらかを選ぶ
    A「プレイヤーは1ドアの組を選ぶ。それを開ける。」
    B「プレイヤーは2ドアの組を選ぶ。そこから自動的にハズレが1つ除外されるので、残りを開ける。」

このように表記されれば、感覚的にもどちらが当たる確率が高いかは一瞭然であろう。

ドアの数を増やす

ドアの数を100枚に増やしてみよう。当たりのドアは1つで、残り99枚はハズレ
この状況でドアを1つ選んだ場合、プレイヤーが当たりを引く確率は1しかない。
つまり、逆に言えば99の確率で選ばなかった99枚のドアのうちのどこかにアタリがあるわけである。

さて、プレイヤードアを1つ選ぶと、モンティは次々とハズレドアを開けてゆく。
最終的に98枚のドアを開けた。

そして今、自分が選んでいるのは「1の確率で当たりを含んでいるドア1枚」であり目の前には「99の確率でどこかに当たりを含む99枚のドアから、98枚のハズレを除去した残り1枚」が存在している。
となれば、いつ選択を変更するか?今でしょ!

この問題が有名になった経緯

元々この問題(とその解)はスティーブセルビンが『The American Statistician(アメリカ統計学者)』誌に「確率の問題」として1975年に発表していたが、1990年マリリンボスサヴァントが連載する雑誌『Parade(パレード)』のコラム欄に、読者からこの問題が投稿されたことで大々的に再注された(マリリン1986年最高IQ保持者としてギネス登録されていた)。

この時マリリン「変更すべきである。当る確率が2倍になるからだ。」と解答した。
かしこれには数多くの反論が殺到。その中には博士号所持者からの物もかなりあった。
対するマリリンは表や解説を掲載する等、理解を得るために手を尽くした。それでも反論・批判は止まず。

(前述の通りこの問は解法と同時に15年前に開されていたが、その当時も多くの反が寄せられておりその中には反論もあったのでセルビンは半年後にルールを明確にする追加の解説開していた)

話を聞いたアンドリューヴァージョニが、自前のパソコンを用いてゲームシミュレーションを数回ほど行った。
その結果は……なんとマリリンの回答と一致した。
ありえん(笑)」と反論していた多くの数学者も、これには思わず冷や。すぐさま手のひらを返した。
かくしてマリリンは、数万通にも及ぶしい反論に耐え、自らの理論が正しいという事を明したのであった。
ちなみに博士号所有者の反論のうち、いくつかは雑誌に名前付きでされてしまい、逆に嘲笑を浴びることとなった。

問題文の曖昧さについて

Parade』に投稿された質問の手紙では、この問題は以下のように書かれていた。(一部分)

(原文)Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

翻訳あなたがゲーム番組に参加していて、3つのドア選択肢が与えられているとします。1つのドアの後ろにはがあり、 他の後ろにはヤギがいます。
あなたは1つのドア(例:1番)を選び、ドアの後ろに何があるかを知ってい司会者が、ヤギがいる別のドア(例:3番)を開きます。 それから彼はあなたに「2番のドアを選びたいですか?」と言います。 
選択肢を切り替えることは、あなたに有利なのでしょうか?

(以下Wikipedia日本語版からの引用) プレーヤーの前に閉じた3つのドアがあって、1つのドアの後ろには品の新が、2つのドアの後ろには、はずれを意味するヤギがいる。プレーヤーは新ドアを当てると新がもらえる。プレーヤーが1つのドアを選択した後、会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる。
ここでプレーヤーは、最初に選んだドアを、残っている開けられていないドアに変更してもよいと言われる。
ここでプレーヤードアを変更すべきだろうか?

この部分だけを読んでは、会者の行動ルール定義会者は必ずハズレドアを開く、それはプレイヤーの最初の選択がヤギかに関わらない、会者が開くドアは3番ではなく2番もありえる、など)が曖昧であり、ルールについて誤解をする可性があった。

しかし、このParade誌の質問文には一緒にマリリンの解も印刷されているし、さらに最初のコラムへ反論が来た後にマリリンがもっと詳しく解説した後でさえも数学者たちから更に大量の反論が来ているので、問題文の曖昧さが多くの数学者たちを間違えさせた原因とは言い切れないと思われる。

(参考:Wikipediaexit、下記参考資料)

参考資料

類題

ゲームポケットモンスター赤・緑」では物語の始めに、冒険の仲間となるポケモンを3匹のうちから1匹選んでオーキド博士から貰うイベントがある。ポケモンモンスターボールに入っており、ボールの外見は3つとも同じである。その後、博士の孫であるライバルが残りの2匹から1匹を選ぶ。そのポケモン属性三竦みになっており、属性の相性によりポケモンバトルで有利・不利が決まる。

Q.さて、主人公ライバルの選択のあと、オーキド博士主人公に対して「今なら余っているポケモンに変えてもいいがどうするか」と聞いてきたとする。次の設定の時に、主人公は選択を変更してライバルに有利なポケモンを選ぶことができる確率はいくらか。

ライバルオーキドが再選択の機会を与える前の段階で得られた情報から有利になる確率の高い選択をし、同確率ならばランダムに選ぶものとする。

1.主人公が選択する際、ボールの中身を確認できない。ライバルが選択する際、ライバル主人公の選んだポケモンを確認せず、残ったボールの中身を確認しない。

2.主人公が選択する際、ボールの中身を確認できる。ライバルが選択する際、ライバル主人公の選んだポケモンを確認せず、残ったボールの中身を確認する。

3.主人公が選択する際、ボールの中身を確認できない。ライバルが選択する際、ライバル主人公の選んだポケモンを確認するが、残ったボールの中身を確認しない。

関連動画

関連静画

関連コミュニティ

関連項目

【スポンサーリンク】

  • 33
  • 0pt
記事編集 編集履歴を閲覧

ニコニ広告で宣伝された記事

歌ってみた (単) 記事と一緒に動画もおすすめ!
提供: ふらぺちーの
もっと見る

この記事の掲示板に最近投稿されたピコカキコ

ピコカキコがありません

モンティ・ホール問題

593 ななしのよっしん
2023/09/26(火) 15:30:16 ID: wo3D5HfZEC
変えた方がいいという結論に至るためには,
これ(残りのうちハズレを開けること)が
プレイヤーの回答に関わらず必ず行われるのは必要だが,
プレイヤーが認識しているかは別に関係ないんじゃ
👍
高評価
1
👎
低評価
0
594 ななしのよっしん
2023/09/29(金) 14:08:18 ID: LnQNy0+pRn
>>592
厳密になら必須だろうね。
ただ紹介したりする時の流れというか文脈によっては省けるなと思ってね。
例えば視点プレイヤーの場合とか。
モンティ正解ドア把握しており、残された2つのうちから必ずハズレの方のドアを開ける(残された2つが両方ともハズレの場合はどちらかをランダムに開ける)」
ここの説明がプレイヤーに向けてされていれば「これらのルールプレイヤーも認識している」のは改めて書く必要はないなって。

👍
高評価
0
👎
低評価
0
595 ななしのよっしん
2023/09/29(金) 20:17:18 ID: odRlv2Ejx/
「(あなた視点で)あなたは選択を変えた方が良いか」という話をするなら前提ルールの理解は必須
ルール把握していないとモンティが外れのドアを開けたのがたまたまなのか、故意なのか、故意としても悪意善意かがわからないから

「(全知視点で)プレイヤーは選択を変えた方が良いか」という話をするならルール把握している必要はない
今回はモンティが意図的に外れを選んでくれたのでプレイヤーは変えた方が有利になる
違うルールだと不利になることも当然ある
👍
高評価
0
👎
低評価
0
596 ななしのよっしん
2024/03/17(日) 17:24:03 ID: cbBQJMBSPj
まあそういう意味では、モンティ正解を知らないというのが前提だね
👍
高評価
0
👎
低評価
1
597 ななしのよっしん
2024/04/04(木) 15:03:53 ID: cNPgyiIoMX
>>588
>しかし二人世界一アンラッキーで絶対くじを外す人だったり、
>答えを知っていて意図的に外れ引いてくれる優しい人だった場合
>一人より三人の方が有利というのは直感的にわかるは

確率問題なのにそんな人物紹介されても困るわ
👍
高評価
0
👎
低評価
0
598 ななしのよっしん
2024/04/04(木) 22:31:07 ID: 8XoHfXjZbq
>>597
その必ずハズレを引くアンラッキー男こそがモンティホールであるって話なんだがな
👍
高評価
1
👎
低評価
0
599 ななしのよっしん
2024/04/08(月) 20:28:52 ID: iP6edWFkla
あたりを選ばれたから変更させようとしている、そんな意地悪な人間の心を熟知している人間ほど陥るってことなら分かる。
👍
高評価
0
👎
低評価
1
600 ななしのよっしん
2024/09/19(木) 19:03:43 ID: odRlv2Ejx/
形図で解説してみる。
プレイヤーは最初にAを選ぶとする(どれを選んでも同じだが簡略化のため)
モンティは残った選択肢からランダムで選ぶ(モンティアタリを引くと終了)とする
モンティハズレを引いた場合、プレイヤーは残った選択肢に変更するものとする。

以上の条件で試行した場合、プレイヤー
アタリがAの場合、モンティの選択に関係なくプレイヤーは最後に残った選択肢を選ぶとハズレを引く
アタリがBかCの場合、モンティハズレを引いた場合のみ、プレイヤーは最後に残った選択肢を選ぶとアタリになる

これらの確率はすべて同確率で発生するため、
アタリがAの場合は問答用でハズレ(2/6)
アタリがBかCの場合、50%モンティアタリを引く(2/6)
(省略しています。全て読むにはこのリンクをクリック!)
モンティ・ホール問題1
タイトル:モンティ・ホール問題1
Xで紹介する

601 ななしのよっしん
2024/09/19(木) 19:14:22 ID: odRlv2Ejx/
今度は条件を変えて
モンティは残った中から必ずハズレ選択肢を引く
という条件で考えてみる

アタリがAの場合、モンティは残った中から50%50%ハズレを選択し、プレイヤーは残った選択肢を選ぶと外れる
アタリがBかCの場合、モンティは残った中からハズレ一択100%で選択し、プレイヤーは残った選択肢を選ぶとアタリになる。

よって
アタリがAの場合は最後に残った選択肢問答用でハズレ
アタリがBかCの場合は最後に残った選択肢が必ずアタリ
となるため変更した方が有利になる。
そして二つの図とその条件を見べればモンティランダムで引いた結果たまたまハズレでした、と答えを知っていて必ずハズレを選択することは全く違う結果を招く
モンティ・ホール問題2
タイトル:モンティ・ホール問題2
この絵を基にしています!
Xで紹介する

602 ななしのよっしん
2024/09/29(日) 09:28:24 ID: 5nDGZRnoFB
自分でも性格悪いとは思うんだけど
正直理解してる人の解説見るよりも、理解できない人が「〇〇なんだから1/2じゃないの?」って言ってるの見る方が面いと思ってしまう
👍
高評価
1
👎
低評価
0