因数分解単語

インスウブンカイ

因数分解とは、数学で使われる数や数式の変形の1つである。

概要

因数分解とは、数や数式を、数や数式の積の形に分解することである。
例を挙げると、数式x2-5x+6(x-2)(x-3)と因数分解される。

式の展開の逆の操作であり、展開は地に行えば必ずできるが、因数分解はテクニックや発想が必要なこともあり、一般的に展開よりも難しいとされる。

因数分解が役に立つのは、方程式を解く際などである。
二次方程式ax2+bx+c=0に対し、左辺の因数分解により(x-α)(x-β)=0と変形できれば、(x-α)または(x-β)のどちらかが0であることが分かり、解がx=α,βと導かれる。
また、整数問題の方程式にもを発揮する。
方程式(x-a)(x-b)=ca,b,c整数)のように左辺が因数分解された形となれば、(x-a),(x-b)cの約数となるので、解となるxの値を絞ることができる。

また、数式の因数分解は、係数となる数の範囲を変えることで、結果が変わることもある。
例えば、x2-2有理数係数の範囲ではこれ以上因数分解できないが、実数係数の範囲では(x+2)(x-2)と因数分解することができる。
また、x2+1は実数係数の範囲ではこれ以上因数分解できないが、複素数係数の範囲では(x+i)(x-i)と因数分解することができる。

公式や計算方法の例

  • ab+ac=a(b+c):共通因数でくくる、分配法則の逆
  • x2+(a+b)x+ab=(x+a)(x+b):展開公式を逆に利用
  • x2±2ax+a2=(x±a)22乗の展開公式を逆に利用
  • x2-a2=(x+a)(x-a) :和と差の積の展開公式を逆に利用
  • acx2+(ad+bc)x+bd=(ax+b)(cx+d):たすきがけ
  • x3±3ax2+3a2x±a3=(x±a)33乗の展開公式を逆に利用
  • x3±y3=(x±y)(x2xy+y2)3乗の和と差の公式
  • 2方程式の解の公式利用
    x2-x-1=0の解はx=(1±√5)/2なのでx2-x-1={x-(1+5)/2}{x-(1-5)/2}
  • 同じ部分をまとめて置換
    (x+1)2-5(x+1)+6x+1=yと置換してy2-5y+6=(y-2)(y-3)={(x+1)-2}{(x+1)-3}=(x-1)(x-2)
  • 最低次の文字について整理
    a2-2ab+b2+ac-bc=(a2-2ab+b2)+(a-b)c=(a-b)2+(a-b)c=(a-b){(a-b)+c}=(a-b)(a-b+c)
    a,b2次、c1次なのでcについて整理)
  • 足して引き、和と差の積に持ち込む
    x4+x2+1=x4+x2+1+x2-x2=x4+2x2+1-x2=(x2+1)2-x2={(x2+1)+x}{(x2+1)-x}=(x2+x+1)(x2-x+1)
    x2を足して引く、ここでは係数は実数の範囲とする)
  • 因数定理を利用。xの式P(x)についてP(a)=0ならばP(x)(x-a)を因数に持つ。方程式P(x)=0の解を自で見つけることに相当。
    x3-6x2+11x-6=P(x)としてP(1)=1-6+11-6=0よりP(x)は(x-1)を因数に持つ。
    分解してP(x)=(x-1)(x2-5x+6)=(x-1)(x-2)(x-3)

素因数分解

4=226=2×3のように、1より大きい整数素数の積に分解することを素因数分解という。
素数の素因数分解はその数そのものとすると、1より大きい任意の整数は素因数分解が可となる。

素因数分解の結果は、素因数の積の順序の違いを除いてただ1通りに決まる。これを「素因数分解の一意性」または「算術の基本定理」という。

合成数(素数でない1より大きい整数)の約数となる素数は、合成数をNとすると√N以下となることから、実際の素因数分解を行う際は、1より大きい整数Nに対し、√N以下の素数で割り切れるかどうか調べていく(割り切れなければ素数)という方法を行えばよい。

しかし、巨大な整数を素因数分解するのは容易ではなく、とてつもなく時間がかかるとされる。これを逆手にとって素因数分解を暗号に利用する事も行われているとか…。詳細は「RSA暗号」を参照。

関連動画

関連商品

因数分解に関するニコニコ市場の商品を紹介してください。

関連コミュニティ

関連項目

【スポンサーリンク】

スマホ版URL:
https://dic.nicovideo.jp/t/a/%E5%9B%A0%E6%95%B0%E5%88%86%E8%A7%A3

この記事の掲示板に最近描かれたお絵カキコ

お絵カキコがありません

この記事の掲示板に最近投稿されたピコカキコ

ピコカキコがありません

因数分解

1 ななしのよっしん
2019/05/03(金) 14:47:20 ID: NZzl4D4lt6
(すご+うま)い
2 ななしのよっしん
2019/06/05(水) 22:17:39 ID: Cb0jmvcJGr
拡大体における因数分解が面そう

急上昇ワード