検査陽性のパラドックス 単語


ニコニコ動画で検査陽性のパラドック…の動画を見に行く

ケンサヨウセイノパラドックス

1.2千文字の記事

検査陽性のパラドックスとは、患率の低い病気の検で陽性反応が起きた時に生じるパラドックスである。

(ちなみにこの場合の「パラドックス」は「矛盾」と言う意味ではなく、「直観とずれててなんだかモヤモヤする!」といった意味である。)

パラドックスの起きる状況

あなたが1万人に1人の確率病気の検をうけたところ、陽性反応が出た。しかもこの検の精度は99であるという。

この時「99正しい反応なのだから、99は本当に病気だ。しかも元々しい病気だとすれば、それで陽性反応が出るのはよっぽどである。それだけ結果は信頼出来る。だから私はほとんど確実に病気なんだ!」と考えてしまうじゃん?

でも実はこの場合、あなたが本当にこの病気である可性は、「だいたい102分の1」でしかないのだ。

陽性になる人はどういう人?

陽性になるのは、A「本当に病気で、陽性が出た人」、B「本当は病気ではないが、陽性が出た人」の二種類である。

陽性になった人が本当に病気である確率は?

元々、病気の人は1万人に1人。つまり100万人に100人。その中で陽性が出る人は99なので、100万人に99人がA「病気かつ陽性の人」である。

一方、病気でない人は1万人に9999人。つまり100万人に99万9900人。そのうち陽性になるのは1なので、100万人に9999人がB「病気ではないのに誤って陽性が出た人」になる。

よって、100万人にこの検をすると、陽性の人全体はとても多い(A+B = 99人+9999人 = 10098人)のに、本当に病気である人はその中の100分の1以下の数しかいない(A = 99人)ことになる。

計算するなら、A/(A+B) = 99/(99+9999) = およそ1/102

一度陽性になったというだけでは、ほとんどの人は病気でない、と結論づけられる。

「陽性ならば、病気である」は、「結果がこれこれならば、原因はこうである」という主張

の精度が「99」であることと、実際に病気であることが「99」という事は、同じことではない。

これは検の精度というものが、「病気ならば、陽性になる確率」ということであるのに対し、実際に病気である人以外も検をするのが通常の検診であるからである(でなければ、わざわざその病気を持つモノ以外が検をする事も、その病気を持っている事が分かっているモノも検はしない。持っているかどうか分からないから検をするから、その確率は当然、元々の「実際に病気である人の確率」が関係する)。

このパラドックスは、「ならば」の論理に関係がある。AならばBの時、BならばAは必ずしもならずである。

関連するパラドックス

関連商品

ニコニコ市場は2023年11月に終了しました。ニコニコ市場は2023年11月に終了しました。

関連項目

関連リンク

数字トリック見破り術exit

この記事を編集する

掲示板

おすすめトレンド

ニコニ広告で宣伝された記事

記事と一緒に動画もおすすめ!
もっと見る

急上昇ワード改

最終更新:2025/12/24(水) 05:00

ほめられた記事

最終更新:2025/12/24(水) 05:00

ウォッチリストに追加しました!

すでにウォッチリストに
入っています。

OK

追加に失敗しました。

OK

追加にはログインが必要です。

           

ほめた!

すでにほめています。

すでにほめています。

ほめるを取消しました。

OK

ほめるに失敗しました。

OK

ほめるの取消しに失敗しました。

OK

ほめるにはログインが必要です。

タグ編集にはログインが必要です。

タグ編集には利用規約の同意が必要です。

TOP