今注目のニュース
出産で里帰り中の妻に「あなたは育児から逃げてる」と責められ困惑する夫に説教相次ぐ
“脳食いアメーバ”に感染した10歳の少女が死去、米国
たった1人の乗り遅れ、飛行機が「大幅遅延」して乗客激怒…賠償請求はできる?

モンティ・ホール問題単語

モンティホールモンダイ

掲示板をみる(413)
  • twitter
  • facebook
  • はてな
  • LINE

モンティ・ホール問題とは、確率論の有名な問題の一つ。
問題の内容自体は単純明快であるものの、「直感的な答えと、きちんと確率論に則って導き出された答えが異なる」という人が後を絶たない。
発表された当時、多くの数学者の黒歴史を産み出した。

問題

元ネタアメリカ長寿番組『Let's Make a Deal』中に登場したゲーム
番組会はモンティホール。問題の名称は彼に由来する。
ゲームルールは以下の通り。

  1. プレイヤーの前にはA,B,Cの3つのドアがあり、そのには当たりが1つ、ハズレが2つ用意されている。
  2. プレイヤードアを1つ選択する(この時点では開けない)。
  3. モンティは正解のドア把握しており、残された2つのうちハズレドアを1つ開ける(2つともハズレの場合はランダム)。これはプレイヤーの回答に関わらず必ず行われ、そのことは予めプレイヤーも認識している。
  4. モンティは「今なら選択を変更して構いませんよ?」とプレイヤーに問いかける。

さて、このときプレイヤー最初の選択を変更するべきか、否か

よくある間違い

これらは間違いである。
ゲームルールが異なっていたり、ゲームの一場面を抜き出して解釈した場合、間違いではなかったりする。

解答

最初にプレイヤードアを選択した時点では、

選んだ1枚のドアが当たりである確率 …… 1/3
選ばなかった2枚のドアのうちどちらかが当たりである確率 …… 2/3

  • もし選んだ1枚が当たりなら
    残された2つのドアはどちらもハズレのため、会者がどちらを開けようとも選択を変えないのが正解。
  • もし選ばなかったうちどちらかが当たりなら
    残された2つのドアのうち片方はハズレであり、会者は必ずこのドアを開ける。
    となれば最終的に残ったドアが当たりであるから選択を変えるのが正解。

さて先ほど述べたように、当たりを引く確率は1/3、ハズレ確率は2/3である。
これはつまり、最初の選択のままで当たる確率が1/3、選択を変えると当たる確率が2/3であると言い換えることができる。
したがって、変更した方が2倍の確率で当たるので変更すべきである。

成り立つための要件

この問題が確率論として成立するためには「初めから正解の位置が決まっている」「モンティ外れのドアを開けるという行動を必ず行う」ということを「プレイヤー事前に認識している」必要がある。
もしもモンティが途中で正解の位置を動かすことが出来たり、外れのドアを開けない場合があるという場合、プレイヤーを正解させたいかどうかというモンティの意志が入ってきてしまい期待値の計算が成り立たない。
また、プレイヤーがそれらの要件を事前に認識していない場合確率自体は成り立つが、プレイヤーの立場では上記の可性が除外できないためプレイヤーの知り得る情報から期待値の計算をすることが出来ない。
感覚的に納得できないのは、このあたりも要因もある。

まだ納得できないなら

話の流れを別の言葉に置き換える

ゲームの流れとしては2で「ドアを一つ選択する」、4で「選択を変える」と言う表現がされている。
しかし、よくよく考えてみると最終決定がされるのは4の時点なのであるから、プレイヤーが本当に「当たりのドアを選択する」必要があるのは4の時点あり、2の時点で当たりのドアを選ぶ必要は一切ない。
言い換えれば、2の時点でのプレイヤーは「ドアを『選んだ1つ』と『選ばれなかった2つ』」に組みわけしているだけである。
だとすれば、ゲームの流れは以下のように表記される。

  1. プレイヤーの前に3つのドアがあり、当たりが1枚、ハズレが2枚ある。
  2. プレイヤードアを1つ選択し、ドアを1つと2つの2組に分ける。
  3. 以下の2つから1つを選ぶ
    プレイヤーは1つのドアを選ぶ。それを開ける。」
    プレイヤーは2つのドアを選ぶ。既にハズレを1つ除外したので、残りを開ける。」


このように表記されれば、感覚的にもどちらが当たる確率が高いかは一瞭然であろう。

ドアの数を増やす

ドアの数を100枚に増やしてみよう。当たりのドアは1つで、残り99枚はハズレ
この状況でドアを1つ選んだ場合、プレイヤーが当たりを引く確率は1しかない。
つまり、逆に言えば99確率で選ばなかった99枚のドアのうちのどこかにアタリがあるわけである。

さて、プレイヤードアを一つ選ぶと、モンティは次々とハズレドアを開けてゆく。
最終的に98枚のドアを開けた。

そして今、自分が選んでいるのは「1確率で当たりを含んでいるドア1枚」であり、の前には「99確率でどこかに当たりを含む99枚のドアから、98枚のハズレを除去した残り1枚」が存在している。
となれば、いつ選択を変更するか?今でしょ!

この問題が有名になった経緯

時は1990年
マリリンボス・サヴァントが連載する雑誌のコラム欄に、この問題が投稿された(彼女は最高IQ保持者としてギネス登録されている)。
この時マリリン「変更すべきである。当る確率が2倍になるからだ。」と解答した。
かしこれには数多くの反論が殺到。その中には博士号所持者からの物もかなりあった。
対するマリリンは表や解説を掲載する等、理解を得るために手を尽くした。それでも反論・批判は止まず。
話を聞いたアンドリューヴァージョニが、自前のパソコンを用いてゲームシミュレーションを数回ほど行った。
その結果は……なんとマリリンの回答と一致した。
ありえん(笑)」と反論していた多くの数学者も、これには思わず冷や汗。すぐさま手のひらを返した。
かくしてマリリンは、数万通にも及ぶしい反論に耐え、自らの理論が正しいという事を明したのであった。
ちなみに博士号所有者の反論のうち、いくつかは雑誌に名前付きでされてしまい、逆に嘲笑を浴びることとなった。

関連動画

関連コミュニティ

関連項目

掲示板

  • 411ななしのよっしん

    2019/08/28(水) 13:16:05 ID: htWNqQyNsB

    確率が五分五分になるって考えが一番訳分からん
    いや思考回路は分かるんだけどね

  • 412ななしのよっしん

    2019/08/28(水) 14:18:35 ID: YWmMYXUazq

    何がわからないかがわからん
    出題者はどこが当たりか知っており外れを開ける
    必ずは開ける気分で開けたり開けなかったりはしない。という前提があればそれでじゅうぶん
    変えない場合1/3で勝利、変える場合最初に当たっていれば負けるが変えれば勝つのだから2/3でしょ?

    この問題冷静に考えればを変えますかと言われた後にを変えるかえないの選択をしたあと、さらにどのに変えるかっていう選択肢はもう残ってないことに気付けるかが肝な気がする。

  • 413ななしのよっしん

    2019/08/30(金) 16:11:10 ID: EY0TPKxrWi

    モモ
     パターン
     パターン
     パターン

    あたり
    はずれ
    P プレイヤーが最初に選んだ列
    モ モンティがはずれを除去する列

    という図で見ると一発でよく分かるけど、言葉で説明されてもよくわからんかったw

急上昇ワード

最終更新:2019/09/17(火) 15:00

ほめられた記事

最終更新:2019/09/17(火) 15:00

☆オススメの関連コンテンツ

動画

この記事名で動画を検索

静画(イラスト)

この記事名で静画を検索

ニュース

この記事名でニュースを検索

ウォッチリストに追加しました!

すでにウォッチリストに
入っています。

OK

追加に失敗しました。

OK

追加にはログインが必要です。

       

ほめた!

すでにほめています。

すでにほめています。

ほめるを取消しました。

OK

ほめるに失敗しました。

OK

ほめるの取消しに失敗しました。

OK

ほめるにはログインが必要です。

TOP